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The mean time to reach a threshold �MTT� is the mean first passage time for the number of bound molecules
to reach a given value. In the theory of chemical reactions involving a small number of ligands and molecules,
the MTT represents the first time a given number of binding sites is formed. In that context, the MTT can be
used to characterize the stability of chemical processes, especially when they underlie a biological function.
Using a Markov-chain description, we compute here the MTT, in terms of fundamental parameters, such as the
number of molecules, the ligands and the forward and backward binding rates. We find that the MTT depends
non-linearly on the threshold T, and this result may have several applications, ranging from cellular biology to
synaptic plasticity. We confirm our analytical computations with Brownian simulations.
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I. INTRODUCTION

Molecular activation occurring in cellular microdomains
depends on the binding-unbinding of ligands to specific tar-
gets �1,2�. This is for example the case at synapses, where
synaptic plasticity, a long lasting process underlying learning
and memory �3� can be induced when the concentration of
calcium reaches a certain threshold �4�. Another example
concerns the cellular response to a double strand DNA �ds-
DNA� break: the cell can “sense” the number of breaks and
may decide to undergo apoptosis or not. Interestingly, a
single dsDNA break can be detected and this event is suffi-
cient to activate a global cellular response. The concept of
reaching a threshold as the starting point of a cellular re-
sponse is ubiquitous in biology. We shall mention two other
fundamental examples: in the patterning process, occurring
in the embryo development, cell differentiation is controlled
by a gradient concentration of morphogens and interestingly,
the cell fate can change by a small difference in that concen-
tration �the concentration of the decapentaplegic gene �DPP�
in insects can activate different genes at different thresholds
�5�. Another example concerns the first step of cellular divi-
sion, where chromosomes need to be attached before being
separated �6,7�

We present here several scenarios where an ensemble of
particles �molecules, proteins, ions, ligands� interacts with
immobile targets via binding and unbinding. We compute the
mean first time MTT that the number of bound targets
reaches a threshold value T, which is a key event to induce a
cellular response. However, because studying the MTT in-
volves discreet events, we cannot use the standard equation-
sof mass-action law describing chemical reactions. Recently
several efforts were made �8,9� to model chemical reactions
in small domains. In �10�, using a Markov chain description,
we developed a theory of chemical reactions in micro-
domains based on the dynamis of few Brownian particles.
Although we obtained estimates for the number and variance
of bound molecules, we did not consider the mean time to
reach a threshold, which we are now studying. We consider
M Brownian molecules inside a microdomain that can bind
to immobile targets S modeled generically as

M + S�
k−1

�

MS ,

where � is the forward rate at which a M-molecule encoun-
ters one of the free targets and k−1 is the backward binding
rate at which M −S molecules dissociate. The MTT �T for the
amount of MS molecules at time t, to reach a threshold T is
the expectation of the random time

�T = inf�t � 0�MS��t� = T� , �1�

where �MS��t� is the number of MS molecules at time t. We
estimate here �T in several cases: for an ensemble of the
targets initially free and distributed on the surface of a closed
microdomain, we compute the MTT analytically when the
backward rate vanishes �k−1=0� and later on when k−1�0.
We further confirm these formulas with Brownian simula-
tions. Our main results are summarized by formulas
�17�–�20�, �22�, and �23� which extend previous work on the
first passage time for discreet process �ch. XII, p. 292 �11� or
on diffusion controlled readtions p. 272 �12�. We shall fur-
ther extend our analysis to diffusing molecules that can dis-
appear �with a Poissonian rate� before binding the target
sites, modeled as

M + S→
�

MS , �2�

M→
�

� . �3�

For that case, we introduce a two-dimensional Markov chain
and by counting the number of paths in a Markov graph, we
obtain a general expression �40� for the probability and the
meant time to reach the threshold T �49�. When the number
of binding molecules is large compared to the threshold T,
we obtain some asymptotic expressions, confirmed by
Brownian simulations. Finally, when there are two competi-
tive molecular pathways, we shall evaluate the probability
and the MTT for one of them to be activated before the other.
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We conclude with some applications to the spindle check-
point, an event that precedes the mitotic phase in cell divi-
sion.

II. MTT FOR STOCHASTIC CHEMICAL REACTIONS

We now use a Markov chain to compute the mean first
passage time for the number of bound molecules to reach the
threshold T. The substrate S and the diffusing molecules M
interact as described by equation I. To derive a markov equa-
tion for the probability density functions pk�t�
=Prob��MS��t�=k � �MS��0�=0� that the number of bound
molecules �MS� at time t is equal to k, we study between time
t and t+�t, the transitions to the k state, coming from states
k−1, k, and k+1 with transition rates �k−1 ,−��k
+k−1k� ,k−1�k+1� �10�. pk �for 0�k�S0� satisfy

ṗ0 = − �0p0 + k−1p1,

ṗk = − ��k + k−1k�pk + �k−1pk−1 + k−1�k + 1�pk+1

for 0 � k � S0,

ṗS0
= − ��S0

+ k−1S0�pS0
+ �S0−1pS0−1, �4�

where

�k = ��S0 − k��M0 − k� , �5�

which is the rate for one of the M0−k free molecules to reach
the S0−k free binding sites. � is the binding rate for one
molecule M to a single target, it is the reciprocal of the mean
first passage time �̄ for a particle to a target. When the target
is small enough, �̄ can be approximated by the small hole
formulas �13–16�. To estimate the mean first time that the
number of bound molecules reaches the threshold T, we im-
pose in Eq. �4� that the state �MS�=T is absorbing, which
leads to the modified system:

ṗ0 = − �0p0 + k−1p1,

ṗk = − ��k + k−1k�pk + �k−1pk−1 + k−1�k + 1�pk+1

for 0 � k � T − 1,

ṗT−1 = − ��T−1 + k−1�T − 1��pT−1 + �T−2pT−2,

ṗT = �T−1pT−1. �6�

where pk�t�=Prob��MS�t��=k� with 0�k�T. By definition

pT�t� = Prob��T � t� , �7�

where �T is the first hitting time to the threshold T,

�T = inf�t, �MS��t� = T� . �8�

The MTT �T is given by

�̄T = �
0

+�

Prob��T � t�dt �9�

=�
0

+�

�1 − pT�t��dt . �10�

Equivalently using the normalization condition

	
0

T

pk�t� = 1, �11�

we have the general expression

�̄T = 	
0

T−1

ak, �12�

where ak=
0
+�pk�t�dt. To obtain an analytical expression for

�̄T, we integrate Eq. �6� between 0 and +� with the initial
conditions p0=1 , pk=0. Using that pT�+��=1 and pk�+��
=0 for k�T, we get

− 1 = − �0a0 + k−1a1,

0 = − ��k + k−1k�ak + �k−1ak−1 + k−1�k + 1�ak+1

for 0 � k � T − 1,

0 = − ��T−1 + k−1�T − 1��aT−1 + �T−2aT−2,

1 = �T−1aT−1. �13�

equivalently

aT−1 =
1

�T−1
, �14�

ak =
1

�k
+ �k + 1�k−1

ak+1

�k
for 0 � k � T − 2. �15�

When the binding is irreversible �k−1=0�, the MTT �̄T is the
sum of the forward rates:

�T
irrev =

1

�0
+

1

�1
+ . . . +

1

�T−1
, �16�

=
1

�
	
k=0

T−1
1

�M0 − k��S0 − k�
. �17�

In particular, when M0=S0 and M0	1, the asymptotic for-
mula for Eq. �17� becomes

�T
irrev �

T

�M0�M0 − T�
. �18�

In addition, when the diffusing molecules largely exceed the
number of targets �M0	S0 ,T�, we further obtain from Eq.
�17�, the asymptotic formulas,
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�T
irrev ��

1

�M0
log

S0

S0 − T
when M0 	 S0,T ,

1

�S0
log

M0

M0 − T
when S0 	 M0,T ,

T

�M0S0
when M0,S0 	 T .

 �19�

In Fig. 1, we plot the MTT �T
irrev for several values of the

threshold T and we compare it with Brownian simulations
performed in a circular disk 
=D�R�, which boundary is
reflecting except at the targets.

When k−1�0, the analytical expression for �̄T is given by

�̄T = 	
k=0

T−1
1

�k
+ k−1	

k=1

T−1
k

�k�k−1
+ k−1

2 	
k=2

T−1
k�k − 1�

�k�k−1�k−2

+ k−1
3 	

k=3

T−1
k�k − 1��k − 2�
�k�k−1�k−2�k−3

+ . . .

= 	
j=0

T−1 �k−1
j 	

k=j

T−1
k!

�k − j�!�i=k−j
k �i

�
=

1

�
	
j=0

T−1 � k−1

�
� j

	
k=j

T−1
k!

�k − j�!
�M0 − k − 1�!
�M0 − k + j�!

�S0 − k − 1�!
�S0 − k + j�!

.

Finally, we obtain

�̄T =
1

�
	
j=0

T−1 � k−1

�
� j

	
k=j

T−1
k!

�k − j�!
�M0 − k − 1�!
�M0 − k + j�!

�S0 − k − 1�!
�S0 − k + j�!

.

�20�

This sum can be further approximated for the three following
regimes M0	S0 ,T ,S0	M0 ,T, and S0=M0	T, by using the
first-order expansion in

k−1

� only and the sum 	1
N 1

k =log�N�
+O�1�. We obtain,

�̄T ��
�T

irrev +
k−1

��M0�2� T

S0 − T
− log�1 +

T

S0 − T
�� ,

when M0 	 S0,T ,

�T
irrev +

k−1

��S0�2� T

M0 − T
− log�1 +

T

M0 − T
��

when S0 	 M0,T ,

�T
irrev +

k−1

2�2� T

M0
2�3

, when S0 = M0 	 T .


�21�

Using the expression for �irrev �Eq. �19��, we finally obtain
the asymptotic expressions:

�̄

��
1

�M0
�log�1 +

T

S0 − T
� +

k−1

�M0
� T

S0 − T
− log� S0

S0 − T
���

when M0 	 S0,T ,

1

�S0
�log� M0

M0 − T
� +

k−1

�S0
� T

M0 − T
− log� M0

M0 − T
���

when S0 	 M0,T ,

T

�M0
2�1 +

k−1

2�2� T

M0
2�2� when S0 = M0 	 T .


�22�

Furthermore, when T�S0 and T�M0 respectively, in the
two first regimes �Eq. �22��, we obtain the refined estimates
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FIG. 1. �Color online� MTT: Up, we present the trajectories of
diffusing molecules in a microdomain containing five binding sites
on the boundary. Down: we plot the time �T

irrev as a function of the
threshold T. We present the Brownian simulations �dash line, vari-
ance in black�, the theoretical formula �17� �dash-dot line� and its
approximation �19� �solid line� for a circular disk in the irreversible
case �k−1=0�. The other parameters are S0=15, M0=10, �=0.05,
D=0.1 �m2 s−1, and the radius of the disk R=1 �m �we run 200
simulations�.
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�̄ ��
T

�M0S0
�1 +

1

2
�1 +

k−1

�M0
�� T

S0
�� ,

when M0 	 S0 	 T ,

T

�M0S0
�1 +

1

2
�1 +

k−1

�S0
�� T

M0
�� ,

when S0 	 M0 	 T .

 �23�

We conclude that for �̄	1, the time to threshold T �T varies
quadratically with the narrow escape time �̄ �as �̄= 1

� �, how-
ever, it is a nonlinear increasing function of T. These com-
putations we presented are quite general and can be applied
to describe the mean time to a given number of bound mol-
ecules for any chemical reactions. In particular, changing the
threshold can be seen as a modulatory mechanism.

III. MTT FOR CHEMICAL REACTIONS IN A DOMAIN
WITH KILLING PROCESS

We now study in a microdomain with binding sites, the
MTT of diffusing molecules which can also be killed before
hitting the sites. In that case, the threshold may never be
reached. We shall compute first the probability to the thresh-
old and second the MTT. We treat the case of irreversible
binding sites only and model the killing process as Poisso-
nian of parameter �. To derive the probability to reach the
threshold T, we use a two-dimensional Markov chain for the
joint probability density function pk,m�t� that at time t, there
are k bound molecules and it remains m−k free diffusing
molecules.

pk,m�t� = P��MS��t� = k,w�t� = m, �MS��0� = 0,w�0� = M0� ,

where w�t�= �M��t�+ �MS��t�. In the irreversible case, the
transitions to the state �k ,m� between time t and t+�t can
only occur from the states �k−1,m�, �k ,m� and �k ,m+1�. To
compute the probability that the threshold T is achieved, we
study the chain �k ,m� of having k bound molecules and m-k
free remaining molecules. By imposing a boundary condition
at �T ,m� and �k ,T−1�, we will obtain the probability that the
threshold is reached before the molecules are degraded by
summing over the state �T ,m� for m=T . . .M0. We represent
the transition diagram between states in Fig. 2 and the master
equations are

ṗ0,M0
= − ��M0S0 + �M0�p0,M0

,

ṗ0,m = ��m + 1�p0,m+1 − ��S0m + �m�p0,m

for T − 1 � m � M0,

ṗk,M0
= ��S0 − k + 1��M0 − k + 1�pk−1,M0

− ���S0 − k� + ���M0 − k�pk,M0
for 0 � k � T ,

ṗT,m = ��S0 − T + 1��m − T + 1�pT−1,m for T � m � M0,

ṗk,T−1 = ��T − k�pk,T for 0 � k � T − 1,

ṗk,m = ��S0 − k + 1��m − k + 1�pk−1,m + ��m + 1 − k�pk,m+1

− ���S0 − k� + ���m − k�pk,m for T − 1 � m

� M0, 0 � k � T , �24�

where � and � are, respectively, the forward binding rate and
the killing rate.

The initial condition reads p0,M0
�0�=1 and the normaliza-

tion condition is

	
k=0,m=0

M0,N0

pk,m = 1. �25�

To derive the steady state probabilities pT,m��� and pk,T−1���,
we shall now use that the only absorbing states �T ,m� and
�k ,T−1� are given for T�m�M0 and 0�k�T−1 �see Fig.
2�. Thus by integrating over time system �24�, we obtain that

q0,M0
=

1

M0��S0 + ��
, �26�

q0,m =
1

m��S0 + ��� �

�S0 + �
�M0−m

for T − 1 � m � M0,

�27�

qk,M0
=

�kS0!

�S0 − k�!�M0 − k�� j=0
k �� + ��S0 − j��

for 0 � k � T , �28�

pT,m��� = ��S0 − T + 1��m − T + 1�qT−1,m

for T � m � M0, �29�

pk,T−1��� = ��T − k�qk,T for 0 � k � T − 1, �30�

FIG. 2. Diagram of transition between states. Transition rates
�1�: ��m−k+1� �2�: ��S−k+1��m−k+1� �3�: ��S−k��m−k� �4�:
��m−k� where � and � are, respectively, the forward binding rate
and the killing rate.
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qk,m =
��qk,m+1 + ��S0 − k + 1��m − k + 1�qk−1,m�

�m − k��� + ��S0 − k��

 �m + 1 − k� for T − 1 � m � M0, 0 � k � T ,

�31�

where for 0�k�T−1, T�m�M0,

qk,m = �
0

�

pk,m�t�dt . �32�

A. Probability to reach the threshold

The probability PT to reach the threshold is equal to the
probability to reach any of the states �T ,m� for m=T , ..M0,
that is

PT = 	
m=T

M0

pT,m��� . �33�

To estimate PT, we study the system of Eqs. �26�–�31� and
for 0�k�T and T�m�M, we have derived in the Appen-
dix A

qk,m =

��
i=0

k−1
��S0 − i�

��S0 − i� + �
� 	

0�i1,..,iM0−m�k
�
ij

�

��S0 − ij� + �

���S0 − k� + ���m − k�
.

�34�

We proceed with the computation of the probability PT to
reach the threshold. We get from Eq. �30�, for T�m�M0
that

pT,m��� = ��S0 − T + 1��m − T + 1�qT−1,m, �35�

=��
i=0

T−1
��S0 − i�

��S0 − i� + �
�

 	
0�i1,..,iM0−m�T−1

�
ik

�

��S0 − ik� + �
. �36�

Using Eq. �28�,

q0,m =
1

m��S0 + ��� �

�S0 + �
�M0−m

for T − 1 � m � M0,

�37�

we also have for m=M0,

pT,M0
��� = ��

i=0

T−1
��S − i�

��S − i� + �
� . �38�

Finally, using that the probability is given by
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FIG. 3. �Color online� Probability and MTT in a microdomain
where ligands can be killed before binding. Up: we plot the
probability PT to reach the threshold as a function of T, for dif-
ferent values of the ratio �

� �1,5,10�. The exact formula �40�
�solid line� is compared with the approximation �43� �dash line�. We
also compare with Brownian simulations of M molecules �dash-dot
line�, with diffusion coefficient D moving inside a circular disk of
radius R. The binding sites are of size �. Down: we plot the condi-
tional MTT as function of T for �=0.05. The mean first passage
time �the initial position is at the center� to a binding site of size �

is approximated by 1
� =�= � R2

D ��log� 4�
� �+ 1

4 � �see �15��. The other pa-
rameters are R=1 �m, D=1 �m s−2, S=5, and M =10. Number of
Brownian simulations=250.
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PT = 	
m=T

M0

pT,m��� , �39�

we finally obtain, introducing the variable �
� and T,

p��

�
,T� = PT = ��

i=0

T−1
��S − i�

��S − i� + �
�

�1 + 	
0�i1�T−1

�

��S − i1� + �
+ . . .

+ 	
0�i1�..�iM0−T�T−1

�
ik

�

��S − ik� + �� . �40�

We show in Fig. 3, the graph of PT as a function of the
threshold T for various values of the ratio r= �

� . When T
S

�1, we obtain the approximation

p��

�
,T� � � �S

�S + �
�T�1 +

�

�S + �
�G1�

+ . . . � �

�S + �
�i

�Gi� . . . + � �

�S + �
�M−T

�GM0−T�� ,

�41�

where �Gk� is the number of k tuples �i1 , .. ik� where 0� i1

� . . . � ik�T−1. Using that �Gk�= � T−1+k
k �, we obtain

p��

�
,T� � � �S

�S + �
�T

	
k=0

M−T �T − 1 + k

k
�� �

�S + �
�k

,

�42�

which can written as �see Appendix B�

p��

�
,T� � 	

k=T

M �M

k
�� �S

�S + �
�k� �

�S + �
�M−k

. �43�

This formula has the following interpretation: when there are
many binding sites compared to the number of diffusing
molecules, the binding events become independent. Conse-
quently, the probability to bind can be approximated by Ber-

noulli distribution of parameter �S
�S+� , and the probability of

the binding number is a binomial distribution of parameters
�M , �S

�S+� �. Finally, the probability to reach the threshold is
equivalent to have at least T bounds, and thus we obtain
formula �43�. Interestingly, as shown in Fig. 3, already for
r=10, the exact formula cannot be well approximated by the
approximation �41� and the analytical solution should be
used. The probability is a decreasing, inverse sigmoid type
function as function of the threshold T.

B. Conditional MTT

To get the conditional MTT, we first compute the mean
time �̄��� for a trajectory parametrized by �
= �i0 , i1 , i2 , . . . , in� where 0= i0� i1� . . . in−1� in=T and 1
�n�M −T+1, that follows a path in the Markov diagram
�see Fig. 6 in Appendix B�.

When there are k bound molecules and it remains m−k
free molecules, we shall estimate the mean transition time
from this state �k ,m�, to the state �k+1,m�. This event is
Poissonian with rate �k,m=��S−k��m−k� and the probability
of binding before a molecule is killed is given by

�k,m

�k,m+��m−k� .
Thus, the conditional mean binding time is

E��MS, �MS� = k, �M� = m − k� =
1

�k,m

�k,m

�k,m + ��m − k�

=
1

�k,m + ��m − k�
. �44�

Similarly, the mean time to killing is

E��K, �MS� = k, �M� = m − k� =
1

�k,m + ��m − k�
. �45�

The random times along the path � are independent, thus the
total mean time �̄��� is the sum of all the mean times

�̄��� =�
	
k=0

T−1
1

���S − k� + ���M − k�
if � = �0,T�

	
j=1

n−1
1

���S − ij� + ���M − j + 1 − ij�
+

	
j=1

n

	
k=ij−1

ij−1�ij

ij−1
1

���S − k� + ���M − j + 1 − k�

otherwise.

 , �46�
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The probability P��� that the dynamics follows the path � is

P��� =��
i=0

T−1
��S − i�

��S − i� + �
if � = �0,T�

��
i=0

T−1
��S − i�

��S − i� + �
� ��

k=1

n−1
�

��S − ik� + �
�

otherwise.
 .

�47�

Finally, for a forward binding constant �, a killing rate �, the
conditional MTT �̄T�� ,� ,T� is

�̄T��,�,T� = 	
�

����P���T is reached� , �48�

=

	
�

����P���

p��

�
,T� , �49�

where p� �
� ,T� is the probability to reach the threshold com-

puted in the previous subsection �formula �40��. We now
approximate �T�� ,� ,T� at first order in �

� , which means that
we neglect all the paths �= �i0 , i1 , i2 , . . . , in� such that n�2,
�the probability for the other paths is at least of order � �

� �2�.
Consequently, considering �= �0,T� and �= �0, i ,T� with 0
� i�T−1. At first order, using formula �41�, p� �

� ,T�=1
+o� �

� �. In addition, when M 	T, we obtain from relations
�46� and �47� the approximations for 0� i�T−1

P�� = �0,T����� = �0,T��

� �1 − 	
k=0

T−1
�

��S − k��	
k=0

T−1
1

�M�S − k��1 −
�

��S − k�� ,

P�� = �0,i,T����� = �0,i,T��

� ��

�
� 1

�M�S − i��	
k=0

T−1
1

S − k
+

1

S − i
� . �50�

Finally, we obtain

�T��,�,T� �
1

�M
log� S

S − T
� when M 	 T, � 	 � .

�51�

Interestingly, in Eq. �51�, the term in �
� vanishes, and thus we

recover the zero order approximation Eq. �19� for the MTT
when particles cannot escape. In Fig. 3, the analytical for-
mula �49� and the result of Brownian simulations show rea-
sonable agreement. It might be tempting to believe that re-
placing degradation by a small absorbing window would
give similar results. It does not. Indeed, the probability to
reach a window in a sphere containing several others de-
pends nonlinearly on their distribution, through their capaci-
tance �17–19�. Thus, the rates �k,m and �k,m will differ from
the ones we obtained here. The geometrical configuration of

the holes will now influence the escape and binding rates,
and this effect should be studied carefully.

IV. COMPETING THRESHOLDS

When m molecules M can bind to sites S1 �of number s1�
with a rate k1 or to sites S2 �of number s2� with a rate k2 �no
backward rate�,

M + S1→
k1

MS1, �52�

M + S2→
k2

MS2, �53�

we propose to estimate the probability that the threshold T1
of MS1 bindings is reached before that the number of bound
MS2 reaches the threshold T2. We will also compute the cor-
responding conditional MTT.

When T1+T2�m �for T1+T2�m, the thresholds could
possibly not be reached�, the analysis uses a two-dimensional
Markov chain. Adapting Eq. �24�, the probability density
function pi,j�t� for i bindings MS1 and j bindings MS2 �0
� i�T1 and 0� j�T2�, satisfies the Markov equation

ṗ0,0 = − �k1ms1 + k2ms2�p0,0,

ṗi,0 = − �k1�s1 − i� + k2s2��m − i�pi,0

+ k1�s1 − i + 1��m − i + 1�pi−1,0,

ṗ0,j = − �k1s1 + k2�s2 − j���m − j�p0,j

+ k2�s2 − j + 1��m − j + 1�p0,j−1,

ṗT1,j = k1�s1 − T1 + 1��m − j − T1 + 1�pT1−1,j ,

ṗi,T2
= k2�s2 − T2 + 1��m − i − T2 + 1�pi,T2−1,

ṗi,j = �k1�s1 − i� + k2�s2 − j���m − i − j�pi,j + �m − i − j + 1�

�k1�s1 − i + 1�pi−1,j + k2�s2 − j + 1�pi,j−1� .

and the time-integrated equations are

− 1 = − �k1ms1 + k2ms2�q0,0,

0 = − �k1�s1 − i� + k2s2��m − i�qi,0

+ k1�s1 − i + 1��m − i + 1�qi−1,0,

0 = − �k1s1 + k2�s2 − j���m − j�q0,j

+ k2�s2 − j + 1��m − j + 1�q0,j−1,

pT1,j��� = k1�s1 − T1 + 1��m − j − T1 + 1�qT1−1,j ,

pi,T2
��� = k2�s2 − T2 + 1��m − i − T2 + 1�qi,T2−1,

0 = �k1�s1 − i� + k2�s2 − j���m − i − j�qi,j + �m − i − j + 1�

�k1�s1 − i + 1�qi−1,j + k2�s2 − j + 1�qi,j−1� . ,

If ��T1� �respectively, ��T2�� is the first time the threshold T1
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is reached �respectively, T2, the probability that T1 is reached
before T2 is

P���T1� � ��T2�� = 	
j=0

T2−1

pT1,j��� . �54�

Using similar combinatorial considerations as in Sec. III A,
the probability P� of a path �= �i0 , i1 , . . . , in� for 0= i0� i1
� . . . � in=T1 and 1�n�T2 is

P� = �
k=0

n−1

f�ik,ik+1� , �55�

where i1 counts the last bindings between M and S1, before
any previous bindings between M and S2. In general, ik is
defined such that ik+1− ik is the number of MS1 bounds fol-
lowing exactly k-th MS2 bounds. If i1= i2, there is another
consecutive bound between a single M and another single S2
molecules, while for i1� i2, there are i2− i1 bindings between
M and S1, followed by a single binding between M and S2
and so on. For k�n−1, f�ik , ik+1� are the transition probabili-
ties between the states ��MS1� , �MS2��= �ik ,k� , �ik+1 ,k+1�. For
the special case k=n−1, f�in−1 ,T1� is the transition probabil-
ity between the states �in−1 ,n−1� , �in ,n−1�. The computation
of f goes as follow: for ik= ik+1, the transition probability is
the one of a M molecule to bind to one of the s2− ikS2 free
binding sites where there are s1−k free S1 sites, that is

k2�s2−ik�
k1�s1−k�+k2�s2−ik�

.

f�ik,ik+1� =�
1

1 +
k1�s1 − ik�
k2�s2 − k�

if ik = ik+1

1

1 +
k1�s1 − ik+1�
k2�s2 − k�

�
j=ik

ik+1−1
1

1 +
k2�s2 − k�
k1�s1 − j�

if ik � ik+1 and k � n − 1

�
j=ik

ik+1−1
1

1 +
k2�s2 − k�
k1�s1 − j�

if k = n − 1,

�56�

where the third case corresponds to ik+1− ikMS1 bindings fol-
lowed by a MS2 single event. Summing over all possible
paths,

P���T1� � ��T2�� = 	
k=0

T2−1

� 	
�=�0=i0�. . .�ik+1=T1

�
P�� . �57�

In Fig. 4 we plotted using formula �57� the probability
P���T1����T2�� as a function of T1 for fixed T2. Using the
argumentation of formula �43�, when T1�s1 and T2�s2, this
probability can be approximated by

P���T1� � ��T2�� � 	
k=T1

T1+T2−1 �T1 + T2 − 1

k
�� k1s1

k1s1 + k2s2
�k

 � k2s2

k1s1 + k2s2
�T1+T2−1−k

. �58�

We remark that P depends on the ratio
k1

k2
only, but not on the

number m of M molecules provided that T1+T2�M. The
conditional MTT to reach the threshold T1 before T2 is

��k1,k2,T1,T2� =
	���P���

P���T1� � ��T2��
, �59�

where
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FIG. 4. �Color online� Probability and Mean time to reach the
threshold T1 before T2 in a microdomain where ligands bind with
two kind of sites S1 and S2. Up: we plot the probability P���T1�
���T2�� to reach the threshold as a function of T1 for different
values of T2. We present the exact formula �57� �solid line� and
results obtained by Brownian simulations �dash line� in a circular
domain of radius R with s1 targets S1 of size �1 and s2 targets S2 of
size �2. Down: we plot the conditional MTT as function of T1 for
T2=5. The parameters are S1=S2=5, M =10, �1=�2=0.05 �m, R
=1 �m, and D=1 �m2 s−1. The rates k1 and k2 are given by 1

�

where �= R2

D �log� 4�R
� �+ 1

4 � �see �15��. We ran 500 simulations.
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�� = 	
k=0

n−1

g�ik,ik+1� , �60�

and where

g�ik,ik+1� = �
�1/k2�

�m − ik − k��s2 − k�
if ik = ik+1

	
j=ik

ik+1 �1/k1�
�m − j − k��s1 − j − k�

+
�1/k2�

�m − ik+1 − k��s2 − k�
if ik � ik+1

and k � n − 1

	
j=ik

ik+1−1
�1/k1�

�m − j − k��s1 − j − k�
if k = n − 1.


Following the computation of Sec III B, for

k1

k2
,m	1, we

approximate the conditional MTT �̄�T1 ,T2�, as �see Eq. �50��

P�� = �0,T1����� = �0,T1��

� 	
i=0

T1−1
1

k1m�s1 − i�
−

k2

k1

s2

k1m

� 	
i=0

T1−1
1

�s1 − i�2 + � 	
i=0

T1−1
1

s1 − i
�2� ,

P�� = �0, j,T1����� = �0, j,T1��

�
k2

k1

s2

m�s1 − j�
 � 1

s1 − j
+ 	

i=0

T1−1
1

s1 − i� . �61�

The first order term in
k2

k1
vanishes and finally

�̄�T1,T2� � 	
i=0

T1−1
1

k1m�s1 − 1�

�
1

k1m
log� s1

s1 − T1
� when k1 	 k2, m 	 1.

�62�

This result can be compared to formula �51�, obtained for a
single threshold and a uniform killing rate. In both cases, we
recover the zero order approximation of Eq. �19�, which re-
lies asymptotically on MS1 properties �and not the killing
effect or the number of �MS2� bindings�.

V. CONCLUSION AND PERSPECTIVES

We have presented here a general approach to estimate the
mean time to form exactly T chemical bonds between sub-
strate and ligand particles. The present computation is based
on a Markovian model, which allows us to obtain explicit
formula, confirmed by Brownian simulations. Interestingly,
the MTT is a nonlinear function T. This result may have
other several consequences in cellular biology, including the
design of molecular switches �20� where upon the activation

of a molecular threshold, the cell fate can be reprogrammed.
Another example is the nonlinear relation between the num-
ber Calmodulin Kinase II molecules and the induction of
long term potentiation �4� in synaptic plasticity. A final ex-
ample is the spindle checkpoint occurring during the cell
mitosis �21�: indeed during metaphase, centrosome nucleated
microtubules interact with the chromosome kinetochores to
build the mitotic spindle. Only after all chromosomes have
become aligned at the metaphase plate, when every kineto-
chore is properly attached to a bundle of microtubules, does
the cell enter anaphase. Our analysis can be used to estimate
the probability and the mean time of the number of bindings
occurring between kinetochores �the number of which is
equal to that of chromosomes ranging from a few to less than
50� and the anaphase activators �our M-molecule�. Finally,
the present approach disregards the target organization in the
cellular domain, which may have a significant effect, espe-
cially when the targets can cluster �17–19�

APPENDIX A

We prove relation �34�. Indeed, the formula is true for k
=1 or m=M −1 and a direct computation shows it satisfies
�31�. We obtain the formula, by considering Eq. �31�: qk,m
can be expressed as a sum of two contributions, one depend-
ing on qk−1,m and the other on qk,m+1. Thus for k�k� and
m��m, we can express qk�,m� as a function of qk,m, by sum-
ming the contribution of q�k� ,m�� in the diagram of Fig. 2
for all “paths” leading from �k ,m� to �k� ,m��. In Fig. 5, we
represent a possible path from �k0 ,m+1� to �k2 ,m�, when the
killing happens at state �k1 ,m+1�.

The contribution of qk1,m to qk2,m is obtained by using
inductively �31� �left box in Fig. 5�. Thus

qk2,m =
qk1,m��S − k1��m − k1�

���S − k2� + ���m − k2� �
i=k1+1

k2−1
��S − i�

��S − i� + �

+ �terms not depending on qk1,m� , �A1�

where the terms that do not depend on qk1,m will arise from
the summation of k ,m+r where r�1 that will be taken off
later on. The contribution of qk1,m+1 to qk1,m �middle box in
Fig. 5� is given by

qk1,m =
�

��S − k1� + �
qk1,m+1 +

��S − k1 + 1�
��S − k1� + �

qk1−1,m.

�A2�

Similarly to Eq. �A1�, we get the contribution of qk0,m+1 to
qk1,m+1 �red box in Fig. 5�. Finally, the expression for the

FIG. 5. �Color online� The Markov diagram for a path going
from �k0 ,m+1� to �k2 ,m�.
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contribution of the path represented in Fig. 5 is

qk2,m =
���S − k0��m − k0�

���S − k1� + �����S − k2� + ���m − k2�

 � �
i=k0+1

k2−1
��S − i�

��S − i� + �
�qk0,m+1

+ sum of other contributions. �A3�

We obtain all the contributions by summing over all possible
k1 in the diagram, i.e., all k0�k1�k2 and we obtain

qk2,m = �	
i=k0

k2 �

��S0 − i� + �
� ��S − k0��m − k0�

���S − k2� + ���m − k2�

 � �
i=k0+1

k2−1
��S − i�

��S − i� + �
�qk0,m+1. �A4�

More generally, by summing over all the contributions, we
can obtain an expression for qk,m as a function of q0,M: each
contribution in the diagram corresponds to a certain path
going down M −m times and moving k times forward �see
Fig. 6�. The path goes down on the diagram at i1 , .. iM−m
where 0� i1� . . . � iM−m�k. When summing over all con-
figurations �ij�, we obtain

qk,m = � 	
0�i1,..,iM0−m�k

�
ij

�

��S − ij� + ��
 ��

i=0

k−1
��S − i�

��S − i� + �
� M��S + ��

���S − k� + ���m − k�
q0,M .

�A5�

Using that q0,M =1 / �M��S+��� �Eq. �26��, we obtain the for-
mula �34�.

APPENDIX B

We prove here relation �42� is equal to Eq. �43�: ∀M
�T�1

XT 	
k=0

M−T �T − 1 + k

k
��1 − X�k = 	

k=T

M �M

k
�Xk�1 − X�M−k.

�A6�

Equivalently, we have to show �replace X by 1−X, divide by
XT and replace k by k−T on right side�

	
k=0

M−T �T − 1 + k

k
�Xk = 	

k=0

M−T � M

k + T
�XM−k−T�1 − X�k.

�A7�

We prove �A7� by induction: for T=1 �A7� is true for all M
and for all M it is true for T=M −1.

Suppose for all T that it is true for M −1�T, i.e.,

	
k=0

M−1−T �T − 1 + k

k
�Xk = 	

k=0

M−1−T �M − 1

k + T
�XM−1−k−T�1 − X�k,

�A8�

and let us prove �A8� for M: First, we rewrite the left-hand
side of Eq. �A7�

	
k=0

M−T �T − 1 + k

k
�Xk = 	

k=0

M−1−T �T − 1 + k

k
�Xk + �M − 1

M − T
�XM−T.

�A9�

Second, we consider the right-hand side

	
k=0

M−T � M

k + T
�XM−k−T�1 − X�k

= 	
k=1

M−T � M

k + T
�XM−k−T�1 − X�k + �M

T
�XM−T

= 	
k=0

M−T−1 � M

k + T + 1
�XM−k−1−T�1 − X�k+1 + �M

T
�XM−T.

�A10�

Using Pascal’s rule,

=�1 − X�M−T + �M

T
�XM−T + �1 − X�  	

k=0

M−T−2 ��M − 1

k + T
�

+ � M − 1

k + T + 1
��XM−k−1−T�1 − X�k, �A11�

=�1 − X�M−T + �M

T
�XM−T + 	

k=0

M−T−2 �M − 1

k + T
�XM−k−1−T�1 − X�k

− X 	
k=0

M−T−2 �M − 1

k + T
�XM−k−1−T�1 − X�k

+ 	
k=0

M−T−2 � M − 1

k + T + 1
�XM−k−1−T�1 − X�k+1, �A12�

FIG. 6. Markov diagram for a path starting at �0,M� and ending
at �k ,m�. There are k+M −m steps going down M −m times and
going forward k times.
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= 	
k=0

M−T−1 �M − 1

k + T
�XM−k−1−T�1 − X�k

− X 	
k=0

M−T−2 �M − 1

k + T
�XM−k−1−T�1 − X�k

+ 	
k=0

M−T−2 � M − 1

k + T + 1
�XM−k−1−T�1 − X�k+1 + �1 − X�M−T

+ �M

T
�XM−T − �1 − X�M−T−1, �A13�

= 	
k=0

M−T−1 �M − 1

k + T
�XM−k−1−T�1 − X�k

− X 	
k=0

M−T−2 �M − 1

k + T
�XM−k−1−T�1 − X�k

+ 	
k=0

M−T−3 � M − 1

k + T + 1
�XM−k−1−T�1 − X�k+1 + X�1 − X�M−T−1

+ �1 − X�M−T + �M

T
�XM−T − �1 − X�M−T−1, �A14�

= 	
k=0

M−T−1 �M − 1

k + T
�XM−k−1−T�1 − X�k − 	

k=0

M−T−2 �M − 1

k + T
�XM−k−T�1

− X�k + 	
k=1

M−T−2 �M − 1

k + T
�XM−k−T�1 − X�k + �M

T
�XM−T, �A15�

= 	
k=0

M−T−1 �M − 1

k + T
�XM−k−1−T�1 − X�k + �M

T
�XM−T

− �M − 1

T
�XM−T, �A16�

= 	
k=0

M−T−1 �M − 1

k + T
�XM−k−1−T�1 − X�k + �M − 1

T − 1
�XM−T.

�A17�

By induction, and with Eq. �A9� it follows

	
k=0

M−T �T − 1 + k

k
�Xk = 	

k=0

M−T � M

k + T
�XM−k−T�1 − X�k.

�A18�
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